🚀
Smart Contract Auditors Space
  • 👋Welcome to the Smart Contract Auditors Space
  • Smart Contract Vulnerabilities
    • Anchor
      • FV-ANC-1 Arithmetic Operations
        • FV-ANC-1-CL1 Overflow/underflow in arithmetic operations
        • FV-ANC-1-CL2 Division by zero
        • FV-ANC-1-CL3 Arbitrary rounding
      • FV-ANC-2 Signer Checks
        • FV-ANC-2-CL1 Unvalidated signers
        • FV-ANC-2-CL2 No is_signer check
      • FV-ANC-3 Account/Ownership Validations
        • FV-ANC-3-CL1 Trying to modify an account without checking if it's writeable
        • FV-ANC-3-CL2 Trying to access account data without ownership checks
        • FV-ANC-3-CL3 Usage of UncheckedAccount without manual ownership check
        • FV-ANC-3-CL4 Usage of UncheckedAccount without manual signer check
        • FV-ANC-3-CL5 No is_initialized check when operating on an account
        • FV-ANC-3-CL6 Missing account constraints
        • FV-ANC-3-CL7 Duplicate mutable accounts
        • FV-ANC-3-CL8 Using ctx.remaining_accounts without manual ownership check
        • FV-ANC-3-CL9 Using ctx.remaining_accounts without manual discriminator check
        • FV-ANC-3-CL10 Using ctx.remaining_accounts without non-zero data check
        • FV-ANC-3-CL11 No reload after account mutation
        • FV-ANC-3-CL12 Not validating a set address
      • FV-ANC-4 PDA Security
        • FV-ANC-4-CL1 Using create_program_address
      • FV-ANC-5 Cross-Program Invocation (CPI)
        • FV-ANC-5-CL1 Lack of validation of external program before CPI
        • FV-ANC-5-CL2 CPI without signer seeds
        • FV-ANC-5-CL3 Not unsetting signer status before a CPI
        • FV-ANC-5-CL4 Passing unnecessary accounts to CPIs
      • FV-ANC-6 Error Handling
        • FV-ANC-6-CL1 Unclear error messages
      • FV-ANC-7 Token Operations
        • FV-ANC-7-CL1 Unvalidated token mint & owner
        • FV-ANC-7-CL2 Using init with an ATA
      • FV-ANC-8 System Account Validation
        • FV-ANC-8-CL1 Unvalidated sysvar address
      • FV-ANC-9 Type Cosplay
        • FV-ANC-9-CL1 Not using discriminators to validate account types
        • FV-ANC-9-CL2 Account structures without discriminators
      • FV-ANC-10 Closing accounts
        • FV-ANC-10-CL1 Closing accounts without zeroing data & setting a closed discriminator
        • FV-ANC-10-CL2 Operations on accounts marked as closed
        • FV-ANC-10-CL3 Unintended closure by close constraint
    • Solidity
      • FV-SOL-1 Reentrancy
        • FV-SOL-1-C1 Single Function
        • FV-SOL-1-C2 Cross Function
        • FV-SOL-1-C3 Cross Contract
        • FV-SOL-1-C4 Cross Chain
        • FV-SOL-1-C5 Dynamic
        • FV-SOL-1-C6 Read-Only
      • FV-SOL-2 Precision Errors
        • FV-SOL-2-C1 Token Decimals
        • FV-SOL-2-C2 Floating Point
        • FV-SOL-2-C3 Rounding
        • FV-SOL-2-C4 Division by Zero
        • FV-SOL-2-C5 Time-Based
      • FV-SOL-3 Arithmetic Errors
        • FV-SOL-3-C1 Overflow and Underflow
        • FV-SOL-3-C2 Sign Extension
        • FV-SOL-3-C3 Truncation in Type Casting
        • FV-SOL-3-C4 Misuse of Environment Variables
      • FV-SOL-4 Bad Access Control
        • FV-SOL-4-C1 Using tx.origin for Authorization
        • FV-SOL-4-C2 Unrestricted Role Assignment
        • FV-SOL-4-C3 Lack of Multi-Signature for Crucial Operations
      • FV-SOL-5 Logic Errors
        • FV-SOL-5-C1 Boundary Misalignment
        • FV-SOL-5-C2 Incorrect Conditionals
        • FV-SOL-5-C3 Improper State Transitions
        • FV-SOL-5-C4 Misordered Calculations
        • FV-SOL-5-C5 Event Misreporting
      • FV-SOL-6 Unchecked Returns
        • FV-SOL-6-C1 Unchecked Call Return
        • FV-SOL-6-C2 Unchecked Transfer Return
        • FV-SOL-6-C3 Silent Fail
        • FV-SOL-6-C4 False Positive Success Assumption
        • FV-SOL-6-C5 Partial Execution with No Rollback
        • FV-SOL-6-C6 False Contract Existence Assumption
      • FV-SOL-7 Proxy Insecurities
        • FV-SOL-7-C1 delegatecall Storage Collision
        • FV-SOL-7-C2 Function Selector Collision
        • FV-SOL-7-C3 Centralized Update Control
        • FV-SOL-7-C4 Uninitialized Proxy
      • FV-SOL-8 Slippage
        • FV-SOL-8-C1 Price Manipulation
        • FV-SOL-8-C2 Front-Running
        • FV-SOL-8-C3 Insufficient Liquidity
        • FV-SOL-8-C4 Unexpected Gas Increase
      • FV-SOL-9 Unbounded Loops
        • FV-SOL-9-C1 Dynamic Array
        • FV-SOL-9-C2 Unrestricted Mapping
        • FV-SOL-9-C3 Recursive Calls
        • FV-SOL-9-C4 Reentrancy Loops
        • FV-SOL-9-C5 Nested Loops
      • FV-SOL-10 Oracle Manipulation
        • FV-SOL-10-C1 Incorrect Compounding Mechanism
        • FV-SOL-10-C2 Price Drift
        • FV-SOL-10-C3 Manipulation Through External Markets
        • FV-SOL-10-C4 Time Lags
Powered by GitBook
On this page
  • TLDR
  • Game

Was this helpful?

  1. Smart Contract Vulnerabilities
  2. Solidity
  3. FV-SOL-2 Precision Errors

FV-SOL-2-C2 Floating Point

TLDR

Floating-point numbers can’t represent every decimal exactly. For example, 0.3 might be stored as 0.30000000000000004 in a system that uses floating-point arithmetic.

When you divide and multiply these imprecise values, the error compounds. For example, (0.3 / 1000.0) * 1.0 could produce something like 0.00030000000000000004 instead of the expected 0.0003.

This often occurs when dealing with fractional values or very large numbers, where small rounding errors can accumulate and lead to inaccurate calculations or financial discrepancies.

Game

What is the result of userReward? can you tell?

// SPDX-License-Identifier: MIT
// Open me in VSCode and really think before opening the hints!
// Add @audit tags wherever suspicious
// Go to the solidity docs to complete missing knowledge of what's happening here
// Solve by drafting a fix!

totalHoldings = 1000.0; // Total holdings
userHoldings = 0.3;     // User's fractional holdings
totalReward = 1.0;      // Total reward to be distributed

// Calculate user's reward
userReward = (userHoldings / totalHoldings) * totalReward; 

Floating-point calculations can produce small rounding errors. These errors accumulate over multiple calculations, making them especially problematic in systems with many users or repeated transactions. Consider how userReward might differ slightly each time due to these rounding issues

Financial applications need exact values.

Think about how a scaling factor could help you avoid floating-point precision issues, ensuring exact calculations by keeping everything in integer form.

uint256 totalHoldings = 1000 * 10**18; // Fix: Representing 1000.0 with 18 decimal places
uint256 userHoldings = 3 * 10**17;     // Fix 2: Representing 0.3 with 18 decimal places
uint256 totalReward = 1 * 10**18;      // Fix 3: Representing 1.0 as 10^18 (scaled)

uint256 userReward = (userHoldings * totalReward) / totalHoldings; // Result: 3 * 10^14
// This represents 0.0003 Ether without precision errors.
PreviousFV-SOL-2-C1 Token DecimalsNextFV-SOL-2-C3 Rounding

Last updated 6 months ago

Was this helpful?